Type 766

1/4" and 1/2" Air-to-Open Positioner Actuator RESEARCH[®] CONTROL Valves

Technical Brief

DESCRIPTION

The Type 766 actuator with integral, top-mounted positioner is a pneumatically operated, spring opposed diaphragm actuator designed specifically to fit the Research Control Valve bodybonnet assembly. The unit is available in two sizes: one for the 1/4" valve and another larger version for the 1/2" through 1" valves. The unit, when equipped with the model BLRA positioner, functions as an air to open actuator retracting the stem and opening the valve on an increasing instrument signal. The unit is designed to extend the stem, closing the valve, on a decreasing or loss of instrument signal. A force-balance system is incorporated utilizing the full force of the supply air to position the stem precisely and with a high degree of repeatability. This type actuator should be used when the application calls for high positioning accuracy or when greater force is required over the standard actuator such as in the case of high shutoff pressures or excess packing friction.

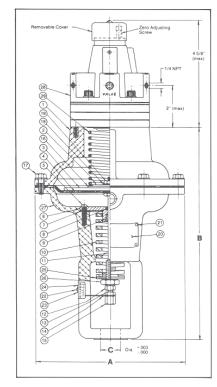
FUNCTION

The Type 766 actuator normally operates in response to a 3-15 psi change in instrument signal or a 12 psi range. The span, or range, of instrument signal is determined by the feedback range spring mounted directly under the positioner. The feedback range spring is responsible for sensing the position of the main diaphragm as the instrument signal changes. The position is then transmitted through the spring, directly to the positioner diaphragm assembly. The valve spring, visible in the yoke area, provides the downward thrust necessary to conteract forces created within the valve. Consideration should be given to the amount of preload required for proper operation since the main valve spring only provides downward force. See instructions on reverse side.

OPERATION

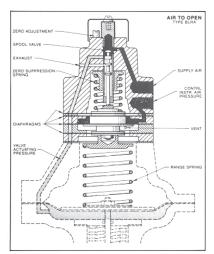
The actual operation of the unit is simple. Two air lines are required: one to provide the instrument signal and one to provide supply air. The amount of supply air required is determined by the spring force necessary to overcome forces generated within the valve. The standard minimum supply pressure is 22 psig of clean, filtered dry air.

The two air lines should be connected to the ports marked "supply" and "inst" on the positioner. The "load" and "aux load" are not used in normal installations and are provided with "vented" stainless plugs. These plugs should not be removed. The port marked "valve" is provided with a blind pipe plug and should be left in place. Since this port is an integral part of the piping of air from the positioner to the main diaphragm, it can also be plugged with a gauge, which will indicate the actual output of the positioner to the air diaphragm.



Shown mounted on Type 807 valve

Upon an increase in instrument signal, the position of the pilot within the positioner is shifted down, causing the supply air to be re-directed through internal passages to the main valve diaphragm cavity. As the main diaphragm travels upward, the feedback range spring is compressed. The increased force, created by the range spring, is transmitted to the diaphragm assembly in the positioner. The upward shift in the positioner diaphragm assembly causes the pilot to re-position and assume a balanced state. The entire function creates a complete feedback loop within the unit, causing the valve to position accurately and with a high degree of repeatability.


Note: The positioner, when in operation, will constantly bleed unused supply air.

Dimensions (inches)

Size	A	в	с
1/4"	5.12	7.93	.625
1/2"	6.43	9.40	.875

Description of items

Zero adjustment:

Technical Information

Dimensions: Actuator Size 1/4" 1/2" A:....5.12" 6.43" B:....7.93" 9.40" C:....625" .875" D:...2" max.---E:...4.625" max.---Stroke:.....437" .562"

Weight: 1/4" unit w/posit. - aprx. 6 lbs. 1/2" unit w/posit. - aprx. 7 lbs.

Maximum Operating Supply Pressure = 60 psig Maximum overload Pressure = 100 psig Maximum Temp. at 25 psi. Lower limit- minus 20 deg. F Upper limit- plus 150 deg. F

Effective diaphragm area: 1/4" unit - 7.3 sq. in. 1/2" unit - 11.3 sq. in.

Positioner data:

Air consumption: With 25 psig supply: 0.60 scfm in balance condition 0.22 scfm in unbalanced cond. Response level: The output is sensitive to changes in control-air pressure as small as 0.1% of full range.

The point at which the valve begins to open can be adjusted with the zero adjusting screw located under the protective cap on top of the positioner. The opening point can be adjusted to begin at any point between 2 psi and 6 psi and will still allow full stroke of the valve with a 12 psi change in signal (when using a 12 lb. range spring).

Force Spring Adjustment:

The spring tension necessary to operate the valve can be roughly calculated prior to installation. (1.) Multiply the trim orifice area by the max. upstream pressure the valve will have to close against. (2.) Multiply the trim stem (or bellows area) by the max. downstream pressure. (3.) Whichever is greater can be divided by the effective area of the topworks. This figure is the amount of air preload required to overcome the forces generated by pressures in the valve body. The normal factory setting is 3.5 psig. If the figure calculated is greater than this, additional loading will have to be adjusted into the spring. If the factory is notified prior to shipment, we will make the necessary adjustments.

If the adjustment must be made in the field, use the following procedure: Reverse the supply and instrument lines into the positioner, i.e. pipe the inst. line into the supply port and the supply line into the inst. port. This procedure bypasses the positioner. Using a regulator in the line piped to the supply port, the amount of preload in the valve spring can be determined by raising and lowering the pressure to this port. If it does not meet the amount determined by the calculations above, you may tighten the spring adjusting nut (item 26). Repeat the procedure until the amount of air pressure required to lift the valve off seat corresponds to the amount indicated in the calculations. Note: The supply pressure may need to be raised to counteract the increased spring loading. Use only the amount of supply necessary to achieve full stroke.

Note: For outdoor use, do not mount upside down as water can enter the spring cavity via the stem and may freeze in colder climates.

Please see our website at **www.badgermeter.com** for specific regions and contacts.

Due to continuous research, product improvements and enhancements, Badger Meter reserves the right to change product or system specifications without notice, except to the extent an outstanding bid obligation exists.

BadgerMeter,Inc. P.O. Box 581390, Tulsa, Oklahoma 74158 (919) 926 9411 / Eav: (919) 922 9962

Copyright © Badger Meter, Inc. 2001. All rights reserved, all data subject to change without notice.

P.O. Box 581390, Tulsa, Oklahoma 74154 (918) 836-8411 / Fax: (918) 832-9962 www.badgermeter.com